# Statistics-AW-Q27

## Statistics-AW-Q27 Online Services

(For Questions 1&2) Mimi was the 5th seed in 2014 UMUC Tennis Open that took place in August. In this tournament, she won 80 of her 100 serving games. Based on UMUC Sports Network, she wins 75% of the serving games in her 5-year tennis career.

1. (2 pts) Find a 90% confidence interval estimate of the proportion of serving games Mimi won. (Show work and round the answer to three decimal places)

2. (5 pts) In order to determine if this tournament result is better thanher career record of 75%.We would like to perform the following hypothesis test

H_0: p=0.75
H_a: p>0.75

(a) (2 pts) Find the test statistic. (Show work and round the answer to two decimal places)

(b) (2 pts) Determine the P-value for this test. (Show work and round the answer to three decimal places)

(c) (1 pt) Is there sufficient evidence to justify the rejection of at the α=0.02 level? Explain.

3. (5 points) The SAT scores are normally distributed. A simple random sample of 225 SAT scores has a sample mean of 1500 and a samplestandard deviation of 300.

(a) (1 pt) What distribution will you use to determine the critical value? Why?

(b) (3 pts) Construct a 95% confidence interval estimate of the mean SAT score.(Show work and round the answer to two decimal places)

(c) (1 pt) Is a 99% confidence interval estimate of the mean SAT score wider than the 95% confidence interval estimate you got from part (b)? Why? [You don’t have to construct the 99% confidence interval]

You can read more about our case study assignment help services here.

## How it Works

#### How It works ?

Step 1:- Click on Submit your Assignment here or shown in left side corner of every page and fill the quotation form with all the details. In the comment section, please mention Case Id mentioned in end of every Q&A Page. You can also send us your details through our email id support@assignmentconsultancy.com with Case Id in the email body. Case Id is essential to locate your questions so please mentioned that in your email or submit your quotes form comment section.

Step 2:- While filling submit your quotes form please fill all details like deadline date, expected budget, topic , your comments in addition to Case Id . The date is asked to provide deadline.

Step 3:- Once we received your assignments through submit your quotes form or email, we will review the Questions and notify our price through our email id. Kindly ensure that our email id assignmentconsultancy.help@gmail.com and support@assignmentconcultancy.com must not go into your spam folders. We request you to provide your expected budget as it will help us in negotiating with our experts.

Step 4:- Once you agreed with our price, kindly pay by clicking on Pay Now and please ensure that while entering your credit card details for making payment, it must be done correctly and address should be your credit card billing address. You can also request for invoice to our live chat representatives.

Step 5:- Once we received the payment we will notify through our email and will deliver the Q&A solution through mail as per agreed upon deadline.

Step 6:-You can also call us in our phone no. as given in the top of the home page or chat with our customer service representatives by clicking on chat now given in the bottom right corner.

## Case Approach

#### Scientific Methodology

We use best scientific approach to solve case study as recommended and designed by best professors and experts in the World. The approach followed by our experts are given below:

Defining Problem

The first step in solving any case study analysis is to define its problem carefully. In order to do this step, our experts read the case two three times so as to define problem carefully and accurately. This step acts as a base and help in building the structure in next steps.

Structure Definition

The second step is to define structure to solve the case. Different cases has different requirements and so as the structure. Our experts understand this and follow student;s university guidelines to come out with best structure so that student will receive best mark for the same.

Research and Analysis

This is the most important step which actually defines the strength of any case analysis. In order to provide best case analysis, our experts not only refer case materials but also outside materials if required to come out with best analysis for the case.

Conclusion & Recommendations

A weak conclusion or recommendations spoil the entire case analysis. Our expert know this and always provide good chunks of volume for this part so that instructors will see the effort put by students in arriving at solution so as to provide best mark.

## Related Services

4. (7 points) Consider the hypothesis test given by

H_0: μ=650
H_a: μ>650

Assume the population is normally distributed. In a random sample of 25 subjects, the sample mean is found to be x ̅=655, and the sample standard deviation is s=28.

(a) (1 pt) Is this test for population proportion, mean or standard deviation? What distribution should you apply for the critical value?

(b) (1 pt) Is the test a right-tailed, left-tailed or two-tailed test?

(c) (2 pts) Find the test statistic. (Show work and round the answer to two decimal places)

(d) (2 pts) Determine the P-value for this test. (Show work and round the answer to three decimal places)

(e) (1 pt) Is there sufficient evidence to justify the rejection of at the α=0.02 level? Explain.

5. (6 pts) Assume the population is normally distributed with population standard deviation of 80. Given a sample size of 25, with sample mean 740, we perform the following hypothesis test.

H_0: μ=750
H_a: μ<750   (1 pt) Is this test for population proportion, mean or standard deviation? What distribution should you apply for the critical value?   (2 pts) What is the test statistic? (Show work and round the answer to three decimal places)   (2 pts) What is the p-value? (Show work and round the answer to two decimal places)   (1 pts) What is your conclusion of the test at the α = 0.10 level? Why? (Show work)   6. (7 pts) A new prep class was designed to improve SAT math test scores. Five students were selected at random. Their scores on two practice exams were recorded; one before the class and one after. The data recorded in the table below. We want to test if the scores, on average, are higher after the class.   SAT Math Score Student 1 Student 2 Student 3 Student 4 Student 5 Score before the class 620 700 650 640 620 Score after the class 640 700 670 670 630   (a) (1 pt) Which of the following is the appropriate test and best distribution to use for the test?   (i) Two independent means, normal distribution (ii) Two independent means, Student’s t-distribution (iii) Matched or paired samples, normal distribution (iv) Matched or paired samples, Student’s t-distribution   (b) (1 pt) Let μd be the population mean for the differences of scores (scores after the class –before the class). Fill in the correct symbol (=, ≠, ≥, >, ≤, <) for the null and alternative hypotheses.   (i) H0: μd ________ 0 (ii) Ha: μd ________ 0   (c) (2 pts) What is the test statistic? (Show work and round the answer to three decimal places)   (d) (2 pts) What is the p-value? (Show work and round the answer to three decimal places)   (e) (1 pt) What is your conclusion of the test at the α = 0.05 level? Why? (Show work)   7. (2 pts) True or False: The rejection region for a test at 5% level of significance is larger than the rejection region for a test at 1% level of significance. (Justify for full credit)   8. (2 pts) True or False: In a right-tailed test, the test statistic is 1.5. If we know P(X < 1.5) = 0.96, then we reject the null hypothesis at 0.05 level of significance. (Justify for full credit)   9. (2 pts) If we reject the null hypothsis in a statistical test at the 0.05 level, then we can conclude:   a. We fail to reject the null hypothesis at 0.01 level b. We fail to reject the null hypothesis at 0.10 levelStatistics-AW c. We do not know the conclusion at 0.01 level d. We can definitely reject the null hypothesis above 0.01 level   10. (2 pts) Three hundred students took a chemistry test. You sampled 50 students to estimate the average score and the standard deviation. How many degrees of freedom were there in the estimation of the standard deviation?   a. 50 b. 49 c. 300 d. 299   Product Code-Statistics AW-Q27